
University of Bremen
Department of

Mathematics and Computer Science
Project PoP

2004-2005
Peeranha42

Programmer’s Guide

Project PoP
http://peeranha42.sf.net

mailto:grp-peeranha42@informatik.uni-bremen.de

May 2005

http://peeranha42.sf.net
mailto:grp-peeranha42@informatik.uni-bremen.de

Contents

1 Creating the PlugIn-SDK 4

2 Hello World Example 5
2.1 Creating a new Plugin . 5
2.2 HelloWorld Sourcecode . 5
2.3 Running the Plugin . 7

3 P42 GUI Interface 8

4 P42 Preference Panel 10

5 P42 Network 11
5.1 Basic setup and group functionality 11

5.1.1 Create your own service group 11
5.1.2 Registering of a peer group(also service group) to the

network . 11
5.1.3 Usage of the listeners in the registered peer groups . . 12
5.1.4 Deregistering of Listeners 14
5.1.5 Deregistering of peer groups 14
5.1.6 Creating peer group(s) 15
5.1.7 How do I get the Advertisements without using a lis-

tener of a specified peer group? 15
5.2 Sending messages over the network 16

5.2.1 Sending unicast messages 17
5.2.2 Sending multicast messages 17
5.2.3 Sending messages to a Set of peers(peerIDs) 17

5.3 Receiving messages . 17

6 P42 PeerListManager 19
6.1 Basic setup and usage . 19
6.2 Add a peer . 20

i

Page ii
CONTENTS

Peeranha42
Programmer’s Guide

6.3 Remove a peer . 20
6.4 Information about peers in the peerlist 20

7 Appendix 22

Project PoP

Introduction

Thid document is intended as a brief introduction to creating new plug-ins
for the Peeranha42 framework.

Description of the Peeranha42

• Peeranha42 Client The P42 Client is the core of Peeranha42. The
special plugin architecture of the client assures unlimited numbers of
add-ons, so that the client can be used in all kinds of application areas.
Moreover the client offeres client-server-like access to p2p technology.
So that every developer can create p2p software easily.

• P42 Development Kit The P42 Development Kit gives support to de-
velopers of P42 Plugins. It contains a large collection of tools, docu-
mentations, tutorials and examples. Thus makes it possible to develope
p2p applications without getting in touch with p2p technology itself.

Description of the P42 Plugins

There are already a few P42 Plugins for testing the P42 Client. They demon-
strate the power of the Peeranha42 and can be seen as examples for developers
of P42 Plugins as well.

• P42 Chat P42 Chat is an instant messanging plugin for the P42 Client
that supports conferencing in JXTA(TM)-Peergroups.

• P42 Chess P42 Chess is a gaming plugin for the P42 Client. Besides 1-
on-1 chess matches over the JXTA(TM) network the plugin furthermore
supports group matches.

• P42 Filesharing P42 Filesharing is a filesharing plugin for the P42
Client. Its special feature is the use of so called overlaynetwork tech-

1

Page 2
CONTENTS

Peeranha42
Programmer’s Guide

nologie that focus on reducing the signaling traffic in p2p networks,
especially the traffic of search queries.

• P42 GameLobby P42 GameLobby is a game portal where people can
meet each other and play games together.

• P42 Peerbay P42 Peerbay is a auction system that bases on the p2p
networks of JXTA(TM).

• P42 Pirate Radio P42 Pirate Radio allows users to create their own
radio station in the internet. Therefore P42 Pirate Radio streams mp3-
files in the p2p network which can be received by other users of P42
Pirate Radio.

Project PoP

License

Peeranha42 is published under the BSD License.
Copyright (c) 2004-2005, Projekt PoP, University Bremen, Germany All
rights reserved.
Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the docu-
mentation and/or other materials provided with the distribution.

• Neither the name of the Projekt PoP, University Bremen, Germany
nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written per-
mission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

3

Chapter 1

Creating the PlugIn-SDK

The SDK is dedicated to developers of Peeranha42 plugIns. To create the
SDK, some requirements are necessary:

• A Java-based build tool like Ant must properly run on your Operating
System. If not you must first install it. The latest stable version of Ant
is available from the Ant web page http://ant.apache.org.

• To build and use Ant, you must have a JAXP-compliant XML parser
installed and available on your classpath.

• You will also need the JDK 1.4 or later installed on your system.

Now you can create the SDK by running ant [option] [target] in a shell
window. In this case the needed option is -Dsdk and the target is sdk. EG.
ant -Dsdk sdk When the build was successfully executed, a sdk directory
will be created. In most cases, ant sdk is sufficient.

4

http://ant.apache.org

Chapter 2

Hello World Example

2.1 Creating a new Plugin

When the Plugin-SDK was successfully created, you will find a sdk directory
inside the peeranha42 build directory. Inside, there is a build.properties

file, which provides general information about the plugin you wish to create,
as for example the name of the plugin, or the main class which is the entry
point to the plugin. When you have finished editing the build.properties,
you can use the SDK to create the basic plugin directories and advertise-
ments: just run ant advertisements in the sdk directory.
Now you can start writing the plugin. Place your sourcecode in the src

directory which the sdk has created.
The main class of a Peeranha42 plugin has to implement the interface:
de.uni_bremen.informatik.p2p.peeranha42.core.plugin.Plugin

As defined in the Plugin interface, a plugin main class has to provide the
following functions:

public String name () ;
public Info getInfo () ;
public void run () ;
public void stop () ;

2.2 HelloWorld Sourcecode

The following is the complete source code of a basic Peeranha42 plugin:

import de . uni_bremen . informatik . p2p
. peeranha42 . plugin_core . ∗ ;

5

Page 6
CHAPTER 2. HELLO WORLD EXAMPLE

Peeranha42
Programmer’s Guide

import net . jxta . endpoint . Message ;
import net . jxta . peergroup . PeerGroup ;
import net . jxta . protocol . PipeAdvertisement ;
import java . math . BigInteger ;

/∗∗
∗ This i s a He l lo world p lug in f o r Peeranha42
∗/

public class HelloWorld

implements Plugin {

/∗∗
∗ The run () method i s the entry po int
∗ to t h i s p lug in
∗ and i s c a l l e d once on s ta r tup
∗/

public void run () {
System . out . println ("Hello, world!") ;
stop () ;

}

/∗∗
∗ The stop () method i s invoked by Peeranha42
∗ in order to stop t h i s p lug in
∗/

public void stop () {
}

/∗∗
∗ @return The name o f t h i s p lug in
∗/

public String name () {
return ("HelloWorld") ;

}

/∗∗
∗ @return The In f o ob j e c t f o r t h i s p lug in
∗/

public Info getInfo () {
return new Info (new PluginID (

new BigInteger (

Project PoP

Peeranha42
Programmer’s Guide

Page 7
CHAPTER 2. HELLO WORLD EXAMPLE

"D20CE8B524B44C15BD77E243C433C08D05" ,
1 6)) ,
"HelloWorld" ,
"Version 0.1" ,
"I am the cool guy who wrote this."

) ;
}

/∗∗
∗ r e c e i v e () i s c a l l e d by Peeranha42
∗ to submit incoming messages to t h i s p lug in
∗
∗ @param pg the peergroup
∗ from which the message o r i g i n a t e s
∗ @param pa the p ipeadvert i s ement
∗ o f the message sender
∗ @param msg the incoming message
∗/

public void receive (PeerGroup pg ,
PipeAdvertisement pa ,
Message msg) {

}
}

2.3 Running the Plugin

When you wish to see the plugin in action, just run ant on the build.xml

which was created by the SDK. This should compile the plugin. If done
correctly, you can now copy the resulting jar file to the peeranha42/plugins
directory and start Peeranha42.

Project PoP

Chapter 3

P42 GUI Interface

Peeranha42 offers a default GUI-Manager with the possibility to display one
or more GUI-panels in a common tabbed window or each GUIpanel in an
own frame.
Most public functions can be called with P42_gui_default.[function()].
Since there is no sense in instantiating more than one user interface, the
public functions to be used by the Plugins are static. The constructor itself
is private and invoked indirectly by a public static method which checks that
there is no other instance running yet before actually invoking it.
To integrate an own GUI-panel in the common GUI, a developer just
has to use a P42_application_pane. This is an extended class from
javax.swing.Jpanel and can be either still extended or simply instanti-
ated.
The swing components and layout inside the panel are completely up to the
plugin programmer. The panel(s) shall then be added to a dynamic list and
this list added to the GUI-manager.
After use, e.g. when the stop() method of the plugin is invoked, the panels
that aren’t needed shall be removed. Bellow there is a short list of the most
important methods needed by plugin developers for using the common GUI.
For more detailed information about the respective methods, constructors or
classes, please refer to the online APIdocumentation.
The constructors of the P42_application_pane:

public P42_application_pane (String title ,
int state ,
PluginID pid)

The public field constants of the P42_default_gui:

public static final int NON_DETACHEABLE

8

Peeranha42
Programmer’s Guide

Page 9
CHAPTER 3. P42 GUI INTERFACE

public static final int ATTACHED

public static final int DETACHED

The public methods of the P42_application_pane:

public PluginID getPluginID ()
public void setPluginID (PluginID pid)
public String getTitle ()
public int getPreferredState ()
public void setPreferredState (int state)

The public methods of the P42_default_gui:

public static void startGUI ()
public static void main (String args [])
public static void addAppPanes (final Vector tempApps)
public static void removeAppPanes (final Vector tempApps)
public static void removeAppPanes (final PluginID pId)
public static boolean addPrefPanels (PluginID pid ,

JPanel p_panels [])

Project PoP

Chapter 4

P42 Preference Panel

You can find the preferences of Peeranha42 and the supplied Plugins as one
tab of the GUI. As you can see here, the preference tab is organized by a
JTree. Besides a main preference panel for the client, Peeranha42 offers
two kinds of Preference panels for each plugin. The first one is generated
automatically by the client.
Every plugin (jar file) placed in the plugin directory is listed in the Pref-
erence tab. The automatically generated panel displays information about
the Plugin using the info class. Furthermore you can start and stop the
plugin from this panel or mark it for auto load on start-up. If you as a
developer want to use the preference tab to configure custom settings for
your plugin, then you can supply these settings to the GUI by using the
addPrefPanels(PluginID pid,JPanel p_panels[]) method in the main
GUI class: P42_gui_default. Your panels are inserted below the branch of
your plugin by order of the supplied array. Adding new branches to build up
an advanced hierarchic tree (with sub branches) is not implemented yet but
will be added later versions.
Adding panels: This should happen while your plugin is starting. Call
addPrefPanels(..) in your run method.
Removing the panels: If your plugin is exiting you have to call
unloadPlugin(PluginID) in your stop() method. Your panels are auto-
matically removed then.

10

Chapter 5

P42 Network

Requirements:

• The plugin-interface should be implemented.

• You have to create the advertisements of the plugin with the latest
SDK. (See chapter 1.)

5.1 Basic setup and group functionality

5.1.1 Create your own service group

Before you can use the network functionality of the peeranha network you
have to create a unique service group for your plugin. The following code
example illustrates how you create your own service group:

PeerGroup svcPg = Network . createServiceGroup (PluginID) ;

Subsequently the service group has to be registered to our network. The
following subsection shows you how to register a peer group to the network.

5.1.2 Registering of a peer group(also service group)
to the network

when a peer group is registered you are able to use the methods send() and
receive() of the network.

Network . register (PluginID , PeerGroup ,
[Optional : UserName]) ;

11

Page 12
CHAPTER 5. P42 NETWORK

Peeranha42
Programmer’s Guide

The network of peeranha42 supports the possibility for a client to have dif-
ferent names in several registered peer groups. Therefore you can specify
any user name you want to. In the case of null as optional user name the
network uses the given peer name in this peer group. This name is created
when you start the configurator and specify a peer name.

5.1.3 Usage of the listeners in the registered peer
groups

By implementing the listeners you can get events in the different registered
peer groups. The listeners support different tasks like checking the state
of the connection to the rendezvous and updating the arrays with the found
peers, pipes or group advertisements. The advantage for the developer is that
she/he does not worry about the discovery tasks. So you will be informed of
changes from the different listener types.
The following listeners are provided when the peer group is registered:

• P42RendezvousListener (informs you about the actual state of the
connection to the connected rendezvous)

• P42PeerAdvListener (gives you an array with the actually found Peer
Advertisements)

• P42PipeAdvListener (gives you an array with the actually found Pipe
Advertisements)

• P42PeerGroupListener (gives you an array with the actually found
Peer Group Advertisements)

In order to use a listener you have to register it for the plugin in the right
peer group. This works like it is shown in the following code example:

// r e g i s t e r a P42RendezvousListeners
Network . addP42RendezvousListener (PluginID ,

PeerGroup ,
P42ConnectionListener) ;

// r e g i s t e r a P42PeerAdvListeners
Network . addP42PeerAdvListener (PluginID ,

PeerGroup ,
P42PeerAdvListener) ;

// r e g i s t e r a P42PipeAdvListeners

Project PoP

Peeranha42
Programmer’s Guide

Page 13
CHAPTER 5. P42 NETWORK

Network . addP42PipeAdvListener (PluginID ,
PeerGroup ,
P42PipeAdvListener) ;

// r e g i s t e r a P42PeerGroupListeners
Network . addP42PeerGroupListener (PluginID ,

PeerGroup ,
P42PeerGroupListener) ;

As soon as a new listener is registered to the network you can handle the
events which are given by these listeners.

If there are changes concerning the connection state you can get them like
this:

public void rendezvousEvent (PeerGroup pg ,
boolean isConnectedToRendezvous) {

. . .
}

When the network finds new advertisements regarding peers, pipes or groups
the corresponding listeners notice the plugin. Therefore different methods
have to be implemented by Classes implementing Listeners.

// This method i s invoked
// i f the P42PeerAdvListener
// i s r e g i s t e r e d
public void changedPeersEvent (PeerGroup pg ,

PeerAdvertisement peerAdv_arr []) {
. . .
}

// This method i s invoked
// i f the P42PipeAdvListener
// i s r e g i s t e r e d
public void changedPipesEvent (PeerGroup pg ,

PipeAdvertisement pipeAdv_arr []) {
. . .
}

// This method i s invoked
// i f the P42PeerGroupListener
// i s r e g i s t e r e d

Project PoP

Page 14
CHAPTER 5. P42 NETWORK

Peeranha42
Programmer’s Guide

public void changedGroupsEvent (PeerGroup pg ,
PeerGroupAdvertisement pgAdv_arr []) {

. . .
}

5.1.4 Deregistering of Listeners

If a listener should be deregistered you have to do the following for the
different registered listeners:

// d e r e g i s t e r a P42RendezvousListeners
Network . removeP42RendezvousListener (PluginID ,

PeerGroup ,
P42ConnectionListener) ;

// d e r e g i s t e r a P42PeerAdvListeners
Network . removeP42PeerAdvListener (PluginID ,

PeerGroup ,
P42PeerAdvListener) ;

// d e r e g i s t e r a P42PipeAdvListeners
Network . removeP42PipeAdvListener (PluginID ,

PeerGroup ,
P42PipeAdvListener) ;

// d e r e g i s t e r a P42PeerGroupListeners
Network . removeP42PeerGroupListener (PluginID ,

PeerGroup ,
P42PeerGroupListener) ;

5.1.5 Deregistering of peer groups

Before you can leave a registered peer group you have to invoke the deregister
function in the network of peeranha42. Therefore you can use two different
ways which are described in the following subsections.

Leave all registered peer groups of a plugin

With the help of this method you can leave all joined peer groups of a plugin.
This method should be invoked at the latest in the stop method of the plugin.
When the method is invoked you only have to give the pluginID as parameter.

Project PoP

Peeranha42
Programmer’s Guide

Page 15
CHAPTER 5. P42 NETWORK

Network . deregister (PluginID) ;

Leave a specified peer group of a plugin

To leave a specified peer group of a plugin you have to do the following:

Network . deregister (PluginID ,
PeerGroup) ;

5.1.6 Creating peer group(s)

Creation of a new peer group

You can create a new peer group with the following statement:

PeerGroup newpg =
Network . createGroup (PeerGroup parentPeerGroup ,

String peerGroupName ,
String peerGroupDescription) ;

If null is inserted as ParentPeerGroup the new created peer group is a
subgroup of the Peeranha42PeerGroup. You usually can use each arbitrary
peer group. After the new peer group has been created it has to to be
registered before you can use the network in this group.

Creating a peer group with a found peer group advertisement

If you have an existing PeerGroupAdvertisement you can use it to create a
new peer group instance. This is especially used if you have found Peer-
GroupAdvertisements with the registered P42PeerGroupListener or manu-
ally with getGroupDiscoveryResults(described in the next section).

PeerGroup newpg =
Network . createGroup (PeerGroupAdvertisement ,

ParentPeerGroup) ;

5.1.7 How do I get the Advertisements without using
a listener of a specified peer group?

• It is possible to get the pipe advertisements in a specified peer group
of plugin by the folowing statement:

Project PoP

Page 16
CHAPTER 5. P42 NETWORK

Peeranha42
Programmer’s Guide

PipeAdvertisement [] peers =
Network . getPipeDiscoveryResults (PluginID ,

PeerGroup ,
searchTerm) ;

After you have done this you get an array with the discovered pipe ad-
vertisements in this peer group. By using the search term it is possible
to specify the search. When you have found the pipe of a peer you are
able to send this peer messages like it is described in the next section.

• If you want to find the peer group advertisements in a peer group of a
plugin you can do it like this:

PeerGroupAdvertisement [] groups =
Network . getGroupDiscoveryResults (PluginID ,

PeerGroup ,
searchTerm) ;

This function works analogue to getPipeDiscoveryResults above. The
unique difference is that you get back an array with peer group adver-
tisents.

• The way to get the peer advertisements works similar to the two meth-
ods above. If any peers are found in the specified group you get back an
array with the found peer advertisements. If there are no peers found
in the group null will be returned by the three functions.

PeerAdvertisement [] peeradvs =
Network . getGroupDiscoveryResults (PluginID ,

PeerGroup ,
searchTerm) ;

This function is necessary if you want to acquire the IDs of peers in
order to send a message to a specified set of peers(peerIDs).

5.2 Sending messages over the network

When a peer group has been registered with the help of the register method
to the network the plugin is able to send messages in the registered peer
group. Therefore you have three possiblities:

Project PoP

Peeranha42
Programmer’s Guide

Page 17
CHAPTER 5. P42 NETWORK

5.2.1 Sending unicast messages

If you only want to send a message to one peer you can do this by executing
the following statement:

Network . sendMsg (PluginID ,
PeerGroup ,
PipeAdvertisement ,
Message) ;

The parameter peer group indicates the peer group in which the message
should be sent. With the specification of the pipe advertisement you define
the peer who should be receive the message.

5.2.2 Sending multicast messages

If you want to send a message to all peers in peer group except yourself
you can do this by leaving out the pipe advertisement of the unicast sending
method. The other parameters remain the same.

Network . sendMsg (PluginID ,
PeerGroup ,
Message) ;

5.2.3 Sending messages to a Set of peers(peerIDs)

If you have the desire to send messages to a specified set of peers you get
a Set or Collection(for more information look at the java API at http://

java.sun.com) with the corresponding peerIDs of the specified peers.

Network . sendMsgToSet (PeerGroup ,
Set ,
Message) ;

5.3 Receiving messages

If you want to use the following receive function there has to be an imple-
mented Receiver-Interface. By implementing this Receiver you also have to
implement the method public Plugin getPlugin(). This should return
the reference to your plugin. Unless you have not implemented this method
you are not able to receive messages in the following receive method:

Project PoP

http://java.sun.com
http://java.sun.com

Page 18
CHAPTER 5. P42 NETWORK

Peeranha42
Programmer’s Guide

public void receive (PeerGroup pg ,
PipeAdvertisement pa ,
Message msg)

The parameter peer group indicates in which peer group the received message
was sent. Furthermore the method gives returns the pipe advertismement of
the peer who sent this message. So you are able to reply to this message.

Project PoP

Chapter 6

P42 PeerListManager

The PeerListManager is started when Network.startServices() is called.
After this intialization all services provided by the PeerListManager are
available. It is neither neccessary, nor intended to have the PeerListManager
started by a plugin thereafter. All needed methods for the usage of the
PeerListManager are located in the PeerListManager-class.

6.1 Basic setup and usage

Most of the PeerListManager-actions that are performed are concerned with
the interchange of messages between peers. This can either work properly,
take a long time to perform or not work at all. The interface between
PeerListManager and a plugin is realized by an event listener system. A
plugin which shall benefit from using the PeerListManager has to imple-
ment the following interface: PeerListEventListener. The initialization
and setup of such a listener-object goes as follows:

// i n i t i a l i z e an own l i s t e n e r
MyPeerListEventListener listener =

new MyPeerListEventListener () ;

// setup l i s t e n e r
PeerListEventManager .

addPeerListEventListener (listener) ;

Which methods should be implemented, and how, is not prescribed and
depends on which information seem important to the plugin designer.

19

Page 20
CHAPTER 6. P42 PEERLISTMANAGER

Peeranha42
Programmer’s Guide

6.2 Add a peer

PeerListManager . addPeer (Peer p) ;

Description of parameters:

• Peer p: Peer Object

6.3 Remove a peer

PeerListManager . removePeer (PeerID peerID) ;

Description of parameters:

• PeerID peerID: The unique PeerID of the peer which is to be removed.

6.4 Information about peers in the peerlist

The PeerListManager contains various information profiles about each peer.
There is volatile information about a peer on one hand, and static informa-
tion about a peer on the other hand. This distinction enables plugins to
gather information about a peer which may be relevant at one moment, but
becomes irrelevant the next time the plugin is started, and to seperate those
information from the static information about a peer, which never changes.
Such information is transferred to the peerlist the first time when a peer is
added. Static information transferred in this way is locally stored on the
hard disc.
To access volatile information about a peer at a later time as well as to
update it at runtime, one can use the following method:

PeerListManager . updatePeerProfile (PeerID peerID) ;

To access information about a peer one needs the Peer-object of that peer:

Peer p=PeerListManager . getPeer (PeerID peerID) ;

Description of parameters:

• PeerID peerID: The unique ID of a peer.

Now volatile and static information about a peer are accessible in the follow-
ing ways:

Project PoP

Peeranha42
Programmer’s Guide

Page 21
CHAPTER 6. P42 PEERLISTMANAGER

// v o l a t i l e in fo rmat ion
p . getVolatilePeerProfileEntry (String key)
// or s t a t i c in fo rmat ion
p . getStaticPeerProfileEntry (String key)

Description of parameters:

• String key: A key string for the information in a profile. Key strings
have the following format:

– key=’foo’

– key= ’foo.bar’ , where bar is hierarchically ordered beneath foo.

– key= ’foo.bar.something’ accordingly with something one level
deeper.

Under certain circumstances it might be useful to store information in a
plugin-specific way, to make information accessible to other applications.
For this purpose, there are further methods which also work according to
the static/volatile scheme. Those methods need a PluginID as an additional
parameter. Information stored in that way have keys of the form:

key=pluginID.key

// v o l a t i l e p lug in in fo rmat ion
p . getVolatilePluginProfileEntry (String key ,

String pluginID)
// or s t a t i c p lug in in fo rmat ion
p . getStaticPluginProfileEntry (String key ,

String pluginID)

Project PoP

Chapter 7

Appendix

Homepage

http://peeranha42.sf.net

Contact

mailto:grp-peeranha42@informatik.uni-bremen.de

22

http://peeranha42.sf.net
mailto:grp-peeranha42@informatik.uni-bremen.de

	Creating the PlugIn-SDK
	Hello World Example
	Creating a new Plugin
	HelloWorld Sourcecode
	Running the Plugin

	P42 GUI Interface
	P42 Preference Panel
	P42 Network
	Basic setup and group functionality
	Create your own service group
	Registering of a peer group(also service group) to the network
	Usage of the listeners in the registered peer groups
	Deregistering of Listeners
	Deregistering of peer groups
	Creating peer group(s)
	How do I get the Advertisements without using a listener of a specified peer group?

	Sending messages over the network
	Sending unicast messages
	Sending multicast messages
	Sending messages to a Set of peers(peerIDs)

	Receiving messages

	P42 PeerListManager
	Basic setup and usage
	Add a peer
	Remove a peer
	Information about peers in the peerlist

	Appendix

